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Sensitivity in MAS solid-state NMR is hampered thus far by
detection of lowy nuclei. *H detection can provide a gain in
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sensitivity of ¢/n/yx)%2 corresponding to a factor of 8 and 31 X

compared to thé3C and*>N detected version of the experiment, 1H I [ cp | TPPM
respectively, whergy andyx correspond to the gyromagnetic ratios or free evolution ¢ Orec
of protons and the respective heteronuclei. This gain in sensitivity 15 ” 92 ‘ ——
can only be achieved, however, if the two nuclei have comparable N [cr] A“J‘.‘-‘
efficiency and line width. Inverse detection schemes are used vv

routinely in solution-state multidimensional heteronuclear correla-
tion experiment$:2 In the solid state!H detection of protonated

samples yields an increase in signal-to-neisempared to the P4 )
A . . 1, Trec

sensitivity that can be achieved upon detection on the hetero- 1H [ X TPPM X —2—

nucleus-only at MAS rotation frequencies above 30 kfi2.For CP I CP I H ‘Aﬁn."

many biological samples, which are temperature sensitive, high 90°¢2 03 04 y 180° U’t”"

rotation frequencies are prohibitive. Furthermore, the active volume 15 t, [I

of high-speed MAS rotors is restricted, reducing the maximum N [ cP | I - OGP ==

achievable signal-to-noise ratio for a given sample. Therefore, we 9° <0

suggested recently to use perdeuteration together with back- Gr .

exchange of the amide protons to attenuate the strong proton proton
dipolar coupling$:” This concept retains maximum sensitivity in Figurfé 1d (Tt%p) 15;“-%?“5%‘&2‘ ?Offr?'aﬁon eﬁg;;megt- SpeCI_tra were

: : i r I Wi nd wi r mon Ing N
Con.trast. to preVIoust §uggested deuteré}tlon straté@leqn,ce all tﬁg?ndﬁectdimznsion. (Iggtton%p-l—detce)zcte?}H,%l:lJi:orre’IationeSgilrJE] pl?lsed
amide sites in the protein backbone contain an NMR active nucleus. fq|q gradients for HO suppression. A 16-step phase cycle is employed for
At moderate rotation frequencies, perdeuteration yields a significant optimum water suppressiont; = y,—y; ¢o= 2(y),2(=); ¢z = 4(X),4(—X);
improvement in sensitivity X5 vs 1N detection at 13 kHz). This ¢a = 8(X),8(—X); rec = ¢1 + ¢2 + ¢3 + ¢4 . 'H CP phases and decoupling
enhancement factor scales approximately inversely proportional to fields must be along to avoid interference with }O suppression. The
the rotation frequencyx9 at 33 kHz). Many applications, e.g. 0@ experimental ime was 3.5 h in each experiment.

structure determination of membrane proteins, might not be possible

Wf'tg(.)ult the lljse OH_: detectpn. A Lnajor pro*?'em ifH det('ectlonf h coherence order selectirand water suppressidAGradients have
of biclogical samples an5|sts, owever, in suppression of the poqn jniroduced recently to solid-state NMR for coherence order
magnetization of the residual solvent necessary to keep samplesg|action in13C13C and13C 15N correlation experiment$. They
hydrate_d. o _ have been used furthermore to restrict the sample volume to
In this comr_nunlcatlon, we repgrt for the fl_rst tln%H-Qetected circumvent radio frequency field inhomogeneity problétrand
;H’lsN comelation expenmept; using p“'sefjf field gl];adlen‘tsh(Pcli:Gs) to suppress zero-frequency artifacts in natural abundance sathples.
or water suppression, carrie out.on aun Onﬂy N-enriche Figure 1 represents the pulse sequences that are employed for
sample of a SH3 domain from chickenspectrin. In contrast to 4 15\ andH-detectedH, 3N correlation experiment. In tHéN-

solution-state NMR, where water molecules tumble freely in oo 1o version of the experiment, spectra were recorded with and
solution, these are tightly bound to the protein microcrystals in the without PMLG *H,*H homonuclear decoupliag7in the indirect

solid state. Water suppression is therefore impossible using g, o) tion period. After CP transfer to nitrogen, TPPM decoupling
conventional schemes. Presaturation leads to a rapid SUPPressiol. | <o for efficient decoupling of protons

of protein proton resonances due to saturation transfer. Binomial

e_xcitation schemeSfailed, due to_the very'broad Wwater resonance peqyeen directly bonded nuclei. Typical CP transfer efficiencies
line. We sh.ow here that pulsed field gradients can successfully beare in the order of 55%. In thi¢l-detected versioriSN magnetiza-
used in solid-state NMR to attenuate the solvent resonance. PFGStion is stored along theaxis after the indirect evolution period. A

are nowadays commonly employed in solution-state NMR for

Tcp Was set to 15Qus to restrict magnetization transfer only

purge gradient is applied to dephase residual transverse water

U Presented in part at the 20th ICMRBS meeting, Toronto, Canada, August 25- magnetization. Typically, sine-shaped gradients are employed of5

30, 2002. X X

T Technische UniversitaMiinchen. . . ms duration and 30 G/cm of maximum strength. After back-transfer

;KOI’SCQ“”QS'”S,\‘.}'IEBﬁI‘MO'e"”'are Pharmakologie (FMP) Berlin. to *H, a Hahn-echo, comprising two rotor periods, was implemented
straZeneca, al. N . . . '

Il Bruker Biospin, Rheinstetten. to eliminate baseline rolling due to probe ring down. GARRas
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Figure 2. Experimental>N-detected (A,B) andH-detected (C¥H,'>N correlation spectra using the pulse sequence displayed in Figure 1. A was recorded
using PMLG with decoupling of the HN scalar coupling according to ref 18. B was recorded allowing for a free evolution in the indirect dimension without
application of PMLG. For clarity, thé>N-detected spectra A,B are displayed mirror imaged. Spectra have been recoBied 800 MHz and a MAS

rotation frequency of 10 kHz, using a commercial 2.5-mm double resonance probe which has been equipped with a gradient coil. The sample has been
prepared as described in ref 19. The assignment of exchangeable prot¥iNardonances is based on ref 20.

applied on thé®N channel during detection to achieve heteronuclear homonuclear decoupling (PDF). This material is available free of charge
(scalar) decoupling which yields a gain in resolution in the order via the Internet at http://pubs.acs.org.
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